- .ipynb_checkpoints
 - .localenv
 - datasets
 - docker
 - images
 - 01_the_machine_learning_landscape.ipynb
 - 02_end_to_end_machine_learning_project.ipynb
 - 03_classification.ipynb
 - 04_training_linear_models.ipynb
 - 05_support_vector_machines.ipynb
 - 06_decision_trees.ipynb
 - 07_ensemble_learning_and_random_forests.ipynb
 - 08_dimensionality_reduction.ipynb
 - 09_up_and_running_with_tensorflow.ipynb
 - 10_introduction_to_artificial_neural_networks.ipynb
 - 11_deep_learning.ipynb
 - 12_distributed_tensorflow.ipynb
 - 13_convolutional_neural_networks.ipynb
 - 14_recurrent_neural_networks.ipynb
 - 15_autoencoders.ipynb
 - 16_reinforcement_learning.ipynb
 - _overview.md
 - app_spec.yml
 - book_equations.ipynb
 - extra_autodiff.ipynb
 - extra_capsnets-cn.ipynb
 - extra_capsnets.ipynb
 - future_encoders.py
 - index.ipynb
 - LICENSE
 - math_linear_algebra.ipynb
 - README.md
 - requirements.txt
 - tensorflow_graph_in_jupyter.py
 - tools_matplotlib.ipynb
 - tools_numpy.ipynb
 - tools_pandas.ipynb
 
hands-on-machine-learning